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Summary 

This paper discusses the testing of methods for generating 

uniform numbers in a computer--the commonly used multiplicative 

and mixed congruential generators as vell as t~o nev methods. 

Tests proposed here are more stri~gent than those usually applied, 

because the usual tests or randomness have passed several of the 

commonly used procedures vhich s bsequently gave poor results in 

actual Monte Carlo calculations. he principal difficulty seems 

to be that certain simple _unctions of n-tuples o uni orm random 

numbers do not have the distribution that probability theory predicts. 

Two alternative eneratin metho s are described, one of them 

u in a t b e o uni orm numbers , the other one combining tvo 

con ruen t i 1 enerators. Both of these methods passed the tests, 

whereas the or entiona multiplicative and mixed congruential 

e hods i not . 



Introcluction 

This paper reports the results of extensive testing of random 

number generators, including two which we propose as improvements on 

present methods. We carried out this program of testing because random 

numbers generated by mixed congruential methods gave bad results in a 

number of Monte Carlo calculations, notably those involving order 

statistics. The tests suggest that mixed generators are unsati~factory 

and that generators of the straight multiplicative type are better but 

still suspect. For this reason, we propose two generators which are 

variations on familiar ideas. One combines two congruential generators 

and the other uses a table of random numbers. Both tested out very well. 

By a random number generator, we mean any procedure for producing 

within a computer a sequence of numbers u
1
,u2,... which is supposed 

to represent a sequence o independent uniform random variables. Although 

the U. are supposed to be random, they are usually generated by a 
1 

strictly deuerministic procedure. Most often the Ui are regarded as 

integers, and Ui+l is computed by 

(1) mod M, 

where M is generally taken as 2n for an n-bit binary machine and 

lOn for an n-digit decimal machine. The random number generator is 

often called"multiplicativ~if c = 0 and "mixed" if c 1 o. 

Generators of this type have been used and f avorably reported by many 

'people; an extensive list of references may be found in the survey article 

[3) . Nevertheless, we have had trouble with mixed generators. This led 



us to study the testing of random numbers • We decided that the tests 

commonly applied to random number generators are not of much value. 

The tests we discuss In this paper are more stringent than the common 

tests, but not at all unreasonable. 

In attempting to Improve on the congruentlal generators, we tried 

combining two of them. This gave a generator which seems to be better 

than either of the two congruentlal generators, but It has the disadvantage 

of being slower. We also Investigated the possibility of using a table 

of random numbers. This turns out to be practical on a large computer 

with buffered Input; In fact, for such a machine we recommend this 

method. 

1, A random number generator using a table of random numbers 

An obvious alternative to the use of a numerical procedure for 

generating uniform random numbers Is to use some sort of table of random 

numbers. The big advantage of this is that one should be able to get a 

table which has none of the undesirable characteristics of the numeri- 

cally generated sequences. The two main problems with this approach are 

the time needed to read the table into the computer and the possibility 

of exhausting the table. In this section we describe a random number 

generator which uses a table but overcomes these two problems. 

To overcome the time problem we use a computer with buffered input. 

We use two blocks of core storage to hold random numbers, refilling one 

block from tape while using numbers from the other block. Thus, to get 



be considered a set of ^85 independent random bits. The whole 

sequence of random bits was grouped to form the table put on tape. 

The number 14.6 and 4,85 were chosen to give an efficient 

conversion from decimal random digits to random bits. It happens 

that 101A6 > 2/f85 > .9991 x lO1^6. Therefore, the conversion is 99.9 

per cent efficient and obtains almost the maximum of log?10 bits per 

digit. 

In the test results summarized in Section 4-> the first run used the 

numbers in the table. The second run used the transformation: 

' 

U» = (215 + 5)U + 3 mod 227, 

and the third run used 

U' = i2f + 1)U + 1 mod 2 27 

2. A combination of two conpruential generators 

The generator described in Section 1 is suitable only for computers 

with buffered input, and requires tape handling, which may be inconvenient. 

Therefore, it is still desirable to have some sort of numerical generator. 

One can, of course, use a congruential generator, but our experience with 

these has led us to look for generators with better statistical properties. 

Suppose the first number U, for a congruential generator (1) is 

picked at random. Then the sequence Ü,,U«,... may be considered a 

sequence of random variables. Moreover, each U  will be uniform on 

[0,1], or rather on the set of numbers in [0,1] which can be represented 

exactly in the computer. However, the different U. are not independent, 

and it turns out that the distribution of an n-tuple (U, ,...,U ) may 



be quite far from the correct distribution.    In order to improve the 

distribution of   n-tuples, we propose using two different generators 

of the type (1) and having one shuffle the sequence produced by the 

other. 

For a test program, we used the generators 

(3) "k+l ^ (217 + 3)Uk mod 235* 

and 

,7     ,N„    ,  , „^ 035 U) Vk+1 = (2' + l)Vk + 1 mod 2- 

We let    U0 = 1   and   VQ = 0.    A table of 128 locations in core was filled 

with the numbers    ^2.f"',^12^'    Then to Senera"te    \* the   k     random 

number to be used, we used the first 7 bits of   Y.     as an index to get 

X^    from the table.    The location of   X.     in the table was refilled with 

the next number from the generator (3). 

The time to generate a random number by this methou is about twice 

the time required with a congruential generator.    We consider that it is 

worth suffering this time penalty in order to get a sequence of numbers 

with better statistical properties.    From the test results given in 

Section 4.» we conclude that this generator does indeed have better proper- 

ties than the congruential generators; refer again to the table and 

remarks in that section, 

3,    Testing random numbers 

Various procedures have been proposed for testing sequences of 

random numbers, and extensive references may be found in the survey 

article  [3],    However, most of the proposed tests seem to have little 



relevance to the actual uses of random number sequences. Our experience 

has been that a sequence may pass these tests and yet give a distribu- 

tion of some simple function fClL,...,!! ) of several uniform random 

variables which is far from the correct distribution. The results 

reported in Section 4- should convince the reader of this. 

The two most commonly used tests, the chl-square test on the distri- 

bution of the U., and the serial test, are quite useful for weeding out 

some of the unsatisfactory generators from the outset; they are, in a 

sense, necessary, but certainly not sufficient. Unfortunately, as 

usually applied, they are of very limited precision. For example, in 

[l], Hull, Dobell, and Allard, following the usual practice, divided 

the unit Interval into only ten equal subintervals, In effect, this only 

tests the first decimal digit of the uniform numbers, and one digit 

accuracy is low, even for Monte Carlo calculations. 

Another limitation of these tests is that they say nothing about 

the behavior of n-tuples (U,,,,,,U ) for n > 2, This is a serious 

limitation, for it may happen that pairs (U,,Up) behave well while 

triples (U^U-,!!-) behave very badly. The tests on the multiplicative 

generators illustrate this. 

Our philosophy of testing Is to test n-tuples (U.,,.,,U ) for 

as many values of n as possible and to make the tests for each n 

more stringent than is common« Even so, we still consider that the best 

practice Is to test the sequence to be used for a particular calculation 

by trying it on a similar problem for which the answer Is known. 

U 
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2 
The tests we actually made were   x     tests on the distribution of 

the random numbers, pairs of random numbers, triples of random numbers, 

and various simple functions of several random numbers.   The idea of 

testing simple functions of several random numbers was to have some 

sort of test of the behavior of   n-tuples    (U-,.»#,U )    for   n > 3    and 

to have tests of pairs and triples which would be in some ways more 

stringent than the basic tests. 

Some of the tests were based on the distribution of the maximum 

and minimum of   n   uniform variables.    These were chosen as the easiest 

of the order statistics of    n   uniform variables; our previous dissatis- 

faction with order statistics generated by some of the congruential 

generators led us to include these in our routine tests of any generators. 

We also routinely test the distribution of the sum of    2, 3, and    1+ 

uniform variables, as these distributions are useful in certain procedures 

for generating arbitrary random variables. 

All the tests had the same general form,    A sequence of    n    variables 

X1,X„,...    was computed from the sequence of uniform numbers.    If the 

uniform numbers were actually independent uniform random variables, the 

X.    would be independent identically distributed random variables, perhaps 

multi-dimensional.    The range of the    X.    was divided into    m    cells  of 

equal probability   p    and the number of occurences    k.    in each cell counted. 

2 
The    x -statistic 

p       m    (k.-np) 
X    =   2    —  

1=1       nP 

was  computed.    We then computed the corresponding percentile, i,e, the 

probability that for a random variable with the hypothetical distribution 

2 
the value of   x     would exceed the observed value.    The percentiles were 



rounded to two figures except from some very small values.    These per- 

centiles are tabulated in Section A*    Where    c    appears, it means the 

percentile was less than »02 per cent. 

All the tests were made simultaneously using the same sequence 

U.,U2,...    Thus the results of the various tests are not independent. 

Moreover, as a programming convenience, we took the uniform numbers in 

sets of ten.    From a set of ten we obtained five pairs for the pairs  test, 

three triples for the triples test, and one each of the various  one-dimen- 

sional variables.    Thus from a set of ten uniform numbers, only one pair 

is used for the test of the maximum of two uniforms, one triple for the 

maximum of three, etc.    The exact details of this are given below. 

Three separate runs were made for each generator, and the different 

runs were independent.    In fact, each run started at the point in the 

sequence   U,,U0,... where the last left off. 

We conclude this section by summarizing the details of each test. 

Uniformity.    This was included for the sake of completeness.    The unit 

interval was divided into 100 equal cells.    For each run 10,000 uniform 

numbers were used,  the exact sequence being   U, ,U.. ,IL,,•..    The occur- 

ences in each cell were counted, and the    x      statistic computed. 

Pairs.    Successive pairs  of uniform numbers were taken as the coordinates 

of a point in the unit square.    The unit  square was divided into /+00 

equal cells.    For each run a total of 50,000 pairs was generated. 

'1 
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Triples. Successive triples of uniform numbers were taken as the coordi- 

nates of a point in the unit cube. However, every tenth uniform number 

was skipped. The cube was divided into 1000 equal cells. For each run a 

total of 30,000 triples was generated. 

Maximum of n. This test was made for n = 2, 3, 4., 5, 10, Let F 

denote the distribution function of the maximum of n independent 

uniform random variables. Then if V,,Vp,,..,V  are independent uniform 

random variables, F(max(V, ,V?,,..,V )) is uniform on [0,1], We calcu- 

lated F(max(V1 ,Vp,,,,,V )) for n-tuples from the sequence IL,U2,,,, 

The unit interval was divided into 100 equal sub-intervals. For each 

run, we used 10,000 n-tuples. The sequence of n-tuples actually used 

was (U1,..,,Un), (U11,.,.,U10+n),.,, 

Minimum of n. This test was the same as that for the maximum of n 

except that we took the minimum of n-tuples (V, ,,,,,V ) and used the 

corresponding distribution function. 

Sum of n. Again this test was similar to that for the maximum of n. 

We tested to see if G{V^ + *»»+y )    was uniform, where G is the distribution In ' 

function of the sun of    n    uniform random variables, 

A»    Test results and General Remarks 

Besides the generators described in Sections 1 and 2, we tested 

live congruential generators.    For mixed generators, we chose 

(5) Vl - 101Uk + 1 mod 1010,          Uo = 0» 

and 

(6) Vi - ^ + 1)uk+1 mod 235,         U0 = 0. 
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These have been favorably reported on In [l] and [2],    To represent 

multiplicative generators, we chose 

(7) Vl = ^00M)Uk mod 10    , 0,3 = 1, 

and 

(8) \+1 = (217 + 3)0, mod 235, u0 = i. 

g 
These multipliers insure the maximum possible period of    5 x 10      and 

33 2       respectively.    They follow the suggestion in U] that the multiplier 

be close to   vM, where   M   is the modulus.    Finally, we tested Lehmer's 

original method for the Eniac. 

(9) Uk+1 = 23Uk mod 108 + 1, V0 = ^759^118. 

This was the first congruential generator proposed, and it is still 

widely used. 

The table reports the results of 33 tests made on each of the seven 

generators.    These do not include all the tests actually performed, but 

the results tabulated do give a fair picture of the behavior of the 

various generators.    The quantity given in the table is the p^rcentile 

fcr the appropriate chi-square distribution.    Thus, the 33 values for 

each generator should behave somewhat like a set of 33 numbers chosen 

uniformly from the unit Interval,    There may be occasional small or large 

values, but any preponderance of such values must be suspect. 

On the basis of these tests, which may be viewed as preliminary, 

but certainly indicative, the two mixed congruential methods and Lehmer's 
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original method axe not satisfactory! the two multiplicative methods are 

suspect, while the methods based on a stored table or on mixing of two 

congruential generators appear to be satisfactory.    It is true that the 

results of the pairs test for the storea-table generator might be viewed 

with suspicion.    Note, however, that for neither the stored-table 

generator nor the combination generator do any epsilons, denoting a 

percentile less than .02 per cent, appear in the table»    Moreover if 

the table of random numbers used in the stored table generator should 

turn out to be unsatisfactory,   one can always replace it with a better 

table.    We expect that an excellent table of random numbers can be pre- 

pared by uslrg a sequence of congruential generators to repeatodly 

shuffle either the set of numbers produced by a congruential generator 

or one of the standard tables of random digits. 

In conclusion, we would like to point out that with the high 

speeds of modern computers it is no longer important to look for the 

fastest possible random number generators.    All generators are reasonably 

fast, even the combination of two congruential generators  takes only 

56 microseconds per random number in the 7094. computer.    Therefore, 

we should look for the generator which produces the most suitable sequences of 

random numbers.    We expect that these will turn out to be generators 

using a table of random numbers. 
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